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Materials 
Wild-type extracellular aromatic peroxygenase of A. aegerita (isoform II, pI 5.6, 46 kDa) was 
produced in stirred-tank bioreactors with a soybean-flour suspension as growth substrate, and 
purified as described previously.1 The enzyme preparation was homogeneous by SDS ⁄ PAGE, 
and exhibited an A418 nm ⁄A280 nm ratio of 1.7. The specific activity of the peroxygenase was 59 
U/mg, where 1 U represents the oxidation of l µmol of 3,4-dimethoxybenzyl alcohol to 
3,4-dimethoxybenzaldehyde in 1 min at room temperature. mCPBA (3-chloroperoxybenzoic 
acid) was obtained from Aldrich and purified by stirring in 100 mM pH 7.4 phosphate buffer 
for 1 h followed by filtering and washing thoroughly with water. p-Isopropylbenzoic acid, 
p-ethylbenzoic acid, p-toluic acid, THF, THF-d8, cycloheptanecarboxylic acid, 
cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, 1,4-dioxane, 2,2-dimethylbutyric 
acid were obtained from Aldrich and purified by recrystallization or distillation under 
vacuum. D2O was obtained from Cambridge Isotope Laboratories, Inc. Water used in all 
experiments was de-ionized (Millipore, Milli-Q). Buffer solutions were prepared by mixing 
sodium citrate and citric acid in water and adjusted with NaOH. Phosphate-citrate buffer was 
prepared by mixing 0.2 M dibasic potassium phosphate with 0.1 M citric acid and the pH was 
adjusted with KOH.  
 
Instrumentation 
UV-vis spectral measurements were made with a Hewlett Packed 8453 diode array 
spectrophotometer at room temperature. Stopped-flow experiments were performed with a 
Hi-Tech SF-61 DX2 double mixing instrument with a 1 cm path length equipped with an 
ISOTEMP 3013 D thermostat bath. NMR spectra were recorded on a 500 MHz Bruker 
Avance II spectrometer. GC-MS analyses were run using an Agilent 7890A GC coupled to a 
5975 Inert MSD with a Rtx-5Sil MS column.  
 
Reaction Kinetics 
Kinetic data were collected at 4 oC in 100 mM buffer, citrate buffer for pH 5.0 and 
phosphate-citrate buffer for pH 3.0-7.0. Each experiment was repeated two or three times. 
Concentrations presented are the final concentrations after mixing. Kinetic data for substrate 
hydroxylation were obtained in double-mixing mode using either diode array detection or 
single wavelength mode at 417 nm. Values of k1 were obtained by the fitting of initial rates 
with a series of mCPBA concentrations. Values of kobs were processed by fitting the kinetic 



S2	  
	  

profile to a single exponential equation using Kinetic Studio from Hi-Tech. Values of k2 were 
obtained from the slope of a kobs vs. the [substrate] plot. SVD and global analyses were 
analyzed by ReactLabTM Kinetics from Jplus Consulting.  
 
Figure S1. Absorbance traces at 417 nm upon mixing of ferric enzyme with 2 equiv of 
mCPBA over a range of pH. 

 
Figure S2. Water suppressed 1H-NMR of the reaction mixture of oxidation of p-ethylbenzoic 
acid by 0.22 µM of AaeAPO and H2O2. Labeled resonances correspond to the product 
(R)-4-(1-hydroxyethyl)benzoic acid at 7.748 ppm (2H, dd), 7,330 ppm (2H, dd) and 1.368 
ppm (3H, d). The benzylic proton resonance was obscured by the suppressed water peak.  
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Figure S3. Rate constants for the hydrogen abstraction by MnO4
-, ROO•, RO• and HO• vs. 

the strength of the O-H bonds formed for toluene (solid circles) and p-ethylbenzene (open 
diamonds).2 Plotting rate constants for hydrogen abstraction by AaeAPO-I with p-toluic acid 
and p-ethylbenzoic acid on the curves gives an FeIVO-H bond strength of about 103 kcal/mol.   

 
Table S1. Summary of all substrates, equivalent C-H bonds, BDE, k2, k2’ and logk2’.   

Number Substrates Equivalent 

C-H 

Bonds*  

BDE 
(kcal/mol) 

k2 

 (M-1s-1) 
k2’** 

(M-1s-1) 
logk2’ 

(M-1s-1) 

1 p-Isopropylbenzoic 
acid 

1 83 2.0 
(±0.09)×105 

2.0×105 5.3 

2 p-Ethylbenzoic acid 2 85.5 3.9 (±0.2)×105 1.9×105 5.3 
3 p-Toluic acid 3 90 2.8 (±0.2)×105 9.3×104 5.0 
4 THF 4 92 1.7 

(±0.05)×104 
4.3×103 3.6 

4’ THF-d8 4  4.0 (±0.1)×103   
5 Cycloheptane 

Carboxylic acid 
4 94 3.0 (±0.1)×104 7.5×103 3.9 

6 Cyclopentane 
Carboxylic acid 

8 95.6 1.0 (±0.1)×104 1.3×103 3.1 

7 Cyclohexane 
Carboxylic acid 

6 99 1.0 (±0.2)×104 1.7×103 3.2 

8 1,4-Dioxane 8 96 3.5 
(±0.02)×102 

4.4×101 1.6 

9 2,2-Dimethylbutyric 
acid 

9 100 6.0 
(±0.05)×101 

6.7 0.8 

*The numbers of equivalent C-H bonds were based on the numbers of sites being hydroxylated. **Second-order 
rate constants k2’ were adjusted based on the number of equivalent C-H bonds in the substrates. 
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